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ABSTRACT

We present a new algorithm for solving two-stage stochastic
mixed-integer programs (SMIPs) having discrete first-stage
variables, and continuous or discrete second-stage variables.
For a minimizing SMIP, the BEST algorithm (1) computes
an upper Bound on the optimal objective value (typically
a probabilistic bound), and identifies a deterministic lower-
bounding function, (2) uses the bounds to Enumerate a
set of first-stage solutions that contains an optimal solu-
tion with pre-specified confidence, (3) for each first-stage
solution, Simulates second-stage operations by repeatedly
sampling random parameters and solving the resulting model
instances, and (4) applies statistical Tests (e.g., “screening
procedures”) to the simulated outcomes to identify a near-
optimal first-stage solution with pre-specified confidence.
We demonstrate the algorithm’s performance on a stochastic
facility-location problem.

1 INTRODUCTION

Stochastic mixed-integer programs (SMIP)s arise in varied
contexts such as industrial capacity planning (e.g., Stafford
1997, Ahmed, et al. 2000), vehicle routing or allocation
(e.g., Frantzeskakis and Powell 1990, Morton and Kenyon
2001), facility location (e.g., Laporte et al. 1994), and
network interdiction (Cormican et al. 1998, Israeli 1999).
The common thread is that, in the problems’s first stage,
the user must make discrete, resource-constrained decisions
about the configuration of a system, and in the second
stage uncertainty resolves itself and the user (“adversary”
in the case of interdiction problems) operates the configured
system optimally. The second-stage decision variables may
be continuous or discrete. This paper standardizes on a
minimizing SMIP (e.g., minimizing cost).

Most of the literature on SMIPs focuses on solving
problems for which all second-stage scenarios can be enu-
merated (Klein Haneveld and van der Vlerk 1998, Ahmed
2004). Two exceptions include sequential approximation
7651-4244-0501-7/06/$20.00 ©2006 IEEE
(SA) (e.g., Kall et al. 1988) and the sample average ap-
proximation method (SAAM) (Mak et al. 1999, Kleywegt
et al. 2001). SA sequentially improves lower and upper
bounds by partitioning the state space of the random pa-
rameters. Typically, SA solves a lower-bounding problem
defined across n “conditional-average scenarios,” and must
increase n to refine the partition and tighten the bound.
But, the computational workload tends to increase superlin-
early in n. SAAM solves similar, n-scenario problems but
with sampled scenario data. It too must increase n for bet-
ter accuracy, and therefore suffers from the computational
difficulities that SA exhibits. Both methods may require spe-
cialized techniques to handle integer second-stage variables.
Our goal is to develop an easy-to-implement alternative to
SA and SAAM that does not suffer from their drawbacks.

We develop a fundamentally new algorithm for solving
SMIPs, and call it BEST: Bound, Enumerate, Simulate and
Test. BEST asks the user to preselect ε > 0 and α > 0, and
then produces an ε-optimal solution with a lower bound on
the confidence level of approximately 1− α; hereafter we
refer to this bound as the “approximate confidence level.”
For most practical problems, the approximate confidence
level is likely to be conservative. Furthermore, BEST
may produce a truly optimal solution with an approximate
confidence level that is strictly greater than 1− α.

In its basic form, BEST first computes a global upper
bound (typically probabilistic) on the SMIP’s optimal ob-
jective value z∗. It also identifies a lower-bounding model
whose solution, for fixed first-stage variables, provides a
restricted lower bound on z∗. BEST then applies these
bounds to enumerate a candidate set of first-stage solu-
tions that, with pre-specified confidence, contains at least
one optimal solution. Typically, the candidate set is not a
singleton, so BEST proceeds by simulating second-stage
operations for each candidate: A Monte Carlo simulation
samples random second-stage parameters, and solves the
resulting optimization problems. The algorithm then ap-
plies a statistical test—we use bootstrapping—to screen out
solutions that are unlikely to be optimal. If a single can-
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didate remains, that solution can be declared to be optimal
with high confidence. Even if more than a single candidate
remains, a second test may enable us to declare the “ap-
parent best solution,” i.e., the solution having the smallest
average objective value, to be ε-optimal with pre-specified
confidence. If that test is not satisfied, the method specifies
a second round of simulation and testing that makes such
a declaration valid.

BEST places modest requirements on the types of
SMIPs it can solve. A deterministic lower bound must be
available as a function of the first-stage variables. And, the
expected cost of the SMIP, given a fixed first-stage solution,
should be reasonably easy to estimate using Monte Carlo
simulation. The SMIP should also incorporate “relatively
complete recourse,” defined below. Typically, we solve
SMIPs with linear constraints and linear objective functions,
but “linear” is not an inherent requirement. BEST does not
require the solution of any multi-scenario models as do SA
and SAAM: This is its key computational advantage.

We seek to make the statistical-testing portions of BEST
easily accessible the optimization community, so we pro-
pose a novel vector bootstrap approach to screen candidate
solutions. This eliminates the need for parametric char-
acterizations of the joint distribution of objective-function
values across candidate solutions (e.g., constant variance),
and it means that BEST can be implemented without spe-
cialized statistical functions or tables. In fact, it can be
implemented entirely within an algebraic modeling system
such as GAMS (Brooke et al. 1992).

The rest of the paper is outlined as follows. “Pre-
liminaries,” Section 2, specifies the general formulation of
SMIP and describes the stochastic facility-location problem
we use throughout for illustrative purposes. Section 3 out-
lines the BEST algorithm, and briefly describes the bounds,
enumeration mechanism, and statistical testing methods we
use. Section 4 presents computational results. Section 5
provides conclusions and discusses directions for further
research.

2 PRELIMINARIES

2.1 The Stochastic Mixed-Integer Program (SMIP)

We wish to solve, at least approximately, a two-stage SMIP
with discrete first-stage variables

x ∈ X ≡ {x ∈ Zn1 |Ax = b, 0 ≤ x ≤ u}, (1)

and with continuous or discrete second-stage variables

y ∈ Y ≡ {y ∈ Rn2
+ | some yj may be integer}. (2)
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Using tildes to identify random parameters, this SMIP is

SMIP min
x∈X

Eh(x, ξ̃), where (3)

h(x, ξ̃) = cT x + min
y∈Y

f̃
T
y (4)

s.t. D̃y = d̃ + B̃x, (5)

and where ξ̃ = vec(̃f, D̃, d̃, B̃). Typically, u = 1, i.e., all
first-stage variables are binary. We assume that, with prob-
ability one, the second-stage problem in y has a bounded,
feasible solution for any x ∈ X . Thus, SMIP is a two-
stage stochastic program with relatively complete recourse
(Rockafellar and Wets 1976).

We use a simple example of an SMIP throughout the
paper to illustrate the BEST approach, a single-product, ca-
pacitated stochastic facility-location problem (SFLP). Birge
and Louveaux (1997, pp. 57-59) and Laporte et al. (1994)
describe similar models:

Stochastic Facility-Location Problem (SFLP)

Indices:
i ∈ I candidate facilities, e.g., warehouses
j ∈ J customer zones

Inputs:
ci deterministic cost to construct facility i ($)
b maximum number of facilities
ui planned capacity of facility i if built (tons)
fij deterministic shipping cost from i to j ($/ton)
d̃j random demand in customer zone j (tons)
rj penalty for unmet demand at j ($/ton)

Decision Variables:
xi 1 if facility i is built; 0 otherwise (1st stage)
yij tons shipped from i to j (2nd stage)
vj tons unmet demand at zone j (2nd stage)

Formulation

z∗ = min
x∈{0,1}|I|

E h(x, d̃)

s.t.
∑
i∈I

xi ≤ b, where (6)

h(x, d̃) =
∑
i∈I

cixi + (7)

min
y≥0,v≥0

∑
i∈I

∑
j∈J

fijyij +
∑
j∈J

rjvj

s.t.
∑
j∈J

yij ≤ uixi, ∀ i ∈ I (8)
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∑
i∈I

yij + vj = d̃j , ∀ j ∈ J (9)

In the first stage of SFLP, we choose which facilities
to construct, but in the face of uncertain future demands for
product. In the second stage, actual demands are realized
and the constructed facilities ship to meet those demands
as cheaply as possible. A penalty is paid for each unit
of unmet demand. For fixed x, the deterministic version
of SFLP is a transportation problem with elastic demand
constraints.

3 THE “BEST” ALGORITHM

BEST is based on this self-evident proposition:
Proposition 1 Suppose z′′ and h′(x) are defined

for SMIP such that z′′ ≥ z∗ with confidence 1 − αu, and
h′(x) ≤ Eh(x, ξ̃) for all x ∈ X . Enumerate X = {x̂ ∈
X|h′(x̂) ≤ z′′} and assume X 6= ∅. Then, with confidence
1− αu, X contains at least one optimal solution to SMIP.

Our methods for computing z′′ will never give X = ∅,
so we can now provide a well-defined outline of BEST.

Algorithm BEST
Input: Data for an instance of SMIP; confidence values αu,
αs, and αt for bounding, initial testing (“screening”), and
final testing, respectively, all chosen so that 1− (αu +αs +
αt) equals the desired overall confidence 1− α; allowable
optimality gap ε > 0; initial sample size n0.
Output: A solution x̂ to SMIP that is optimal with with
confidence at least (1− αu)(1− αs), or is ε-optimal with
confidence at least (1− αu)(1− αs)(1− αt).
{

Call Bound to compute z′′, an upper bound on z∗

having confidence level 1− αu;

Call Enumerate to find the initial candidate set of
solutions X = {x̂ ∈ X|h′(x̂) ≤ z′′}. X contains an
optimal solution with confidence 1− αu;

If X = {x̂[1]}, set ε← αs ← αt ← 0 and go to End;

Call Simulate to generate samples ξ̂n, n = 1, . . . , n0

of ξ̃, and to evaluate h(x̂, ξ̂) for each sample and each
x̂ ∈ X ;

Call Test1 with observations from Simulate to screen
out convincingly inferior solutions, leaving the selected
subset X ∗ ⊆ X . X ∗ contains an optimal solution with
(approximate) confidence at least (1− αu)(1− αs);

If X ∗ = {x̂[1]}, set ε← αt ← 0 and go to End;

Call Test2 with parameter ε > 0, input X ∗ and obser-
vations on x̂ ∈ X ∗ from Simulate;

If Test2 returns n+ > 0, call Simulate with X ∗ replac-
ing X and n+ replacing n0, but compute the apparent
76
best solution x̂[1] with respect to all n+ + n0 observa-
tions;

End: Print( x̂[1], “is an”, ε,“-optimal solution with
approximate confidence”, (1− αu)(1− αs)(1− αt));

}

3.1 Bounds for SMIP

BEST requires a global upper bound on z∗, and a lower-
bounding function on Eh(x̂, ξ̃) for any x̂ ∈ X . The number
of possibilities is large, and many are problem dependent,
so we only discuss a few options that apply to SFLP.

3.1.1 Upper Bounds

Specialized deterministic bounds could be used here, for
example, the Edmunson-Madansky bound (Edmunson
1956, Madansky 1959), or a bound based on dual restricted
recourse (Morton and Wood 1999). We would set αu = 0 if
such a bound were used. However, the following, standard,
probabilistic bound (e.g., Mak et al. 1999) applies to
most, if not all SMIPs, and is easily described and computed.

Procedure UpperBound
Input: Coefficients and distribution parameters that define
SMIP; sample size nu; confidence parameter αu.
Output: A probabilistic upper bound on SMIP z′′ ≥ z∗

having confidence level 1− αu.
{

Use a heuristic to identify a “good” first-stage solution
x̂ to SMIP.

According to the distribution of ξ̃, generate nu random
samples, ξ̂1, ξ̂2, . . . , ξ̂nu

, and evaluate h(x̂, ξ̂`) for each;

Compute z′′ = 1
nu

∑nu

`=1 h(x̂, ξ̂`) + tαu,nu−1S/
√

nu

where S is the sample variance estimator for h(x̂, ξ̃)
and tαu,nu−1 is the upper 1 − αu quantile of the t
distribution with nu − 1 degrees of freedom;

Return z′′;

}

The bound z′′ is valid because Eh(x̂, ξ̃) ≥ z∗ for
every x̂ ∈ X . One heuristic that might be used to obtain an
acceptable x̂ would simply solve the expected-value problem,
which is this deterministic MIP:

min
x∈X

h(x, Eξ̃). (10)

Or, we could solve an approximating problem with a mod-
est number of samples ξ̂`, ` = 1, . . . , n′, taken from the
7
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distribution of ξ̃ (e.g., Mak et al. 1999):

min
x∈X

1
n′

n′∑
`=1

h(x, ξ̂`). (11)

This is also a deterministic MIP. Our computational examples
in Section 4 exploit the latter technique.

3.1.2 Lower Bounds

Depending on where an SMIP’s random coefficients appear,
BEST may be able to use lower bounds based on Jensen’s
inequality (e.g., Birge and Louveaux 1997, pg. 140) or
dual restricted recourse (Morton and Wood 1999). Because
h(x, d̃) for SFLP is convex in d̃, Jensen’s inequality applies:

Proposition 2 For SFLP, h′(x) ≡ h(x, Ed̃) ≤
Eh(x, d̃).

Thus, we can compute a lower bound on Eh(x̂, d̃), for
any x̂, by solving a single, deterministic, elastic transporta-
tion problem with demands set at expected values.

The need for a good deterministic lower bound is, admit-
tedly, the most restrictive aspect of BEST. Later in the paper,
we discuss how to tighten the simple, deterministic bound
described above for SFLP. When simple bounds like this do
not apply, we conjecture that probabilistic lower-bounding
techniques will prove useful (Bayraksan and Morton 2006).

3.2 Enumerating Candidate Solutions

Enumerate in BEST requires that we identify all first-stage
solutions x̂ to SMIP that satisfy h′(x̂) ≤ z′′. Given binary x,
the following procedure, which can be implemented easily
in an algebraic model system like GAMS (Brooke et al.
1992), will accomplish the task.

Procedure Enumerate
Input: Deterministic or probabilistic global upper bound z′′

for SMIP; data to define the lower-bounding function h′(x);
Output: Candidate solution set X = {x̂ ∈ X|h′(x̂) ≤ z′′};
{
X ← ∅;
Repeat{

Attempt to solve minx∈X h′(x) for x̂;
If this is infeasible or h′(x̂) > z′′, Return X ;
X ← X ∪ {x̂};
Add a constraint to the description of X to eliminate
x̂ but only x̂, e.g.,∑

i∈I|x̂i=1

xi +
∑

i∈I|x̂i=0

(1− xi) ≤ |I| − 1 ; (12)

}

768
}

The problem minx∈X h′(x) is a sequentially restricted,
deterministic, integer program or mixed-integer program.
Clearly, Enumerate terminates finitely.

The reader will probably see that the minimizing prob-
lem in Enumerate need not be solved exactly. In fact, much
computational effort can be saved by halting the optimiza-
tion as soon as it finds any x̂ ∈ X satisfying h′(x̂) ≤ z′′.
Computational efficiency may also improve if equation (12)
can be replaced by a stronger constraint. For instance, if X
enforces a simple cardinality requirement, 1T x = b, (12)
can be replaced by

x̂T x ≤ b− 1. (13)

If any first-stage variable is a general, bounded integer,
it can be replaced with the standard expansion in terms of
binary variables (e.g., Owen and Mehrotra 2002), and the
enumeration technique described above then applies. We
mention a general, more computationally efficient procedure
in section 5.

3.3 Simulating Candidate Solutions

To estimate the performance of solutions x̂ ∈ X under
uncertainty, we use common random numbers (CRNs) to
simulate realizations of the random second-stage parameters,
and then solve the resulting optimization models to collect
optimal objective values for statistical analysis. CRNs result
in greater efficiency for statistical comparisons when they
induce positive correlation, and we expect such correlation
for many SMIPs. For example, a pattern of generally high
demands in SFLP is likely to result in high distribution
costs and unmet demand penalties for any set of constructed
facilities.

Procedure Simulate
Input: Data to define SMIP; candidate solution set X having
confidence level 1− αu; initial sample size n0.
Output: Randomly generated objective-function data for
each x̂ ∈ X .
{

According to the distribution of ξ̃, generate n0 random
samples, ξ̂`, ` = 1, . . . , n0;

Evaluate zk` ← h(x̂k, ξ̂`) for all x̂k ∈ X and all `;
}

3.4 Testing Candidate Solutions

There are two steps to the testing phase. First, a screening
test, Test1, eliminates solutions from X that are unlikely
to be optimal; we use bootstrapping here. The remaining
candidate solutions, the selected subset X ∗ ⊆ X , will con-
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tain an optimal solution with pre-specified confidence of at
least (1 − αu)(1 − αs). Typically, |X ∗| is much smaller
than |X |, and the algorithm can terminate immediately if
|X ∗| = 1. This type of screening procedure is known as
subset selection (e.g., Bechhofer et al. 1995). The second
phase, Test2, handles situations with |X ∗| > 1, and may
be optional.

Procedure Test1 (Bootstrap Screen)
Input: Candidate solution set X created with confidence
1 − αu; objective-function samples zk` for all k, ` from
Simulate; screening confidence parameter αs; bootstrap
sample size B.
Output: Selected subset X ∗ ⊆ X which contains an optimal
solution with approximate confidence level (1−αu)(1−αs).
{

Initialize wk ← 0 for k = 1, . . . ,K ≡ |X |;
For each bootstrap replication b = 1, . . . , B,

{
Generate n0 indices from {1, 2, . . . , n0} with re-
placement. Call this set L;

Compute average, optimal objective values

z̄
(b)
k ← 1

n0

∑
i∈L

zki, k = 1, . . . ,K; (14)

Update the tally for the “winning” solution:

k∗ ← argmin
k = 1, . . . , K

z̄
(b)
k ; wk∗ ← wk∗ + 1; (15)

}
Let [1], [2], . . . , [K] denote indices of candidate solu-
tions so that w[1] ≥ w[2] ≥ . . . ≥ w[k]. Then

X ∗ ←

{
x̂[1], . . . , x̂[s] |

1
n0

s∑
k=1

wk ≥ 1− αs,

1
n0

s−1∑
k=1

wk < 1− αs

}
; (16)

Return X ∗;
}

This bootstrapping approach preserves the correlation
induced by CRNs for greater efficiency. For x̂ ∈ X , Test2
provides a direct estimate of the confidence level associated
with declaring this solution to be “best.” Asymptotically in
n0, wk/B must converge to 0 for any non-optimal solution,
to 1/m for any of m multiple optimal solutions, and hence
to 1 for a unique optimal solution, if one exists. (The nature
of SFLP makes a unique optimum highly likely.)
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The selected subset X ∗ has random size that depends
on the underlying distribution of objective values. If a few
solutions dominate the others, then E|X ∗| will be small
even if |X | is large and we can use a modest value of n0:
As in other subset selection procedures, the most difficult
situation from a screening perspective occurs when multiple
optima exist. The size of X ∗ also depends on B, n0, and the
confidence level. B ≥ 1000 is recommended for estimating
percentiles. We do not yet know how to choose n0 a priori,
but we note that bootstrapping in other contexts can use
sample sizes as small as nine (Efron and Tibshirani 1993).
Higher confidence (i.e., lower αs) increases the expected size
of X ∗. For any particular problem, increasing or decreasing
αs over limited ranges may not alter the identification of
solutions in X ∗. Thus, the procedure is conservative, i.e.,
actual confidence level is typically higher than the nominal
one.

Additional sampling in the Test2 phase may not be
required, even if |X ∗| > 1. If estimated objective values
for all x̂ ∈ X ∗ are sufficiently close, a simple test may
allow us to declare the apparent best solution to be ε-
optimal with required confidence 1−αt (assuming that X ∗

contains an optimal solution to begin with). Test2—we
borrow “Procedure KN ” from Kim and Nelson (2001)—
uses the initial simulated samples to determine whether
such a declaration can be made, or if additional sampling is
required. In the latter case, the procedure goes on to specify
a bound on the number of additional samples required so
that, when the (possibly new) apparent best solution is
identified, we can validly declare it to be ε-optimal with
confidence 1− αt.

Procedure Test2 (Select)
Input: Selected subset X ∗, |X ∗| > 1, having (approximate)
confidence level (1 − αu)(1 − αs); n0 objective-function
samples from Simulate for each x̂ ∈ X ∗; testing confidence
parameter αt; optimality tolerance ε > 0.
Output: The number of samples in addition to n0 that must
be applied to each x̂ ∈ X ∗ to ensure that the apparent
best solution is ε-optimal with (approximate) confidence
(1− αu)(1− αs)(1− αt).
{

For all x̂k, x̂k′ ∈ X ∗, k 6= k′, compute sample variances
for the pairwise difference using the initial n0 samples:

S2
kk′ ←

1
n0 − 1

n0∑
`=1

(zk` − zk′` − (z̄k· − z̄k′·))
2
,

(17)
and set S2 ← maxk 6=k′ S2

kk′ ;

Compute

h2 ← (n0 − 1)

[(
2αt

|X ∗| − 1

)−2/(n0−1)

− 1

]
; (18)
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Compute the maximum, total sample size required:

N ← bh2S2/ε2c; (19)

Return n+ ← max{N − n0, 0};
}

The Test2 procedure is less intuitive than the bootstrap
in Test1, but in contrast to many alternatives, it requires no
special tables or calculations. In general, N will be large if
|X ∗| is large, if the (positive) correlation induced by CRNs
is low, or if ε is small. As in Kim and Nelson, we reuse
the initial data, but note that the estimated savings in the
total number of samples can be substantial even without
this reuse.

4 COMPUTATIONAL RESULTS

To demonstrate BEST’s empirical performance, we ran-
domly generate 15 SFLP test problems with different char-
acteristics, solve them using BEST, and present results in
Table 1. These problems vary by number of customer zones
and number of potential facilities. Customers and poten-
tial facilities are randomly scattered across a rectangle with
aspect ratio 1:3. Each shipping cost is proportional to the
Euclidean distances a shipment must travel. Deterministic
facility-construction costs, facility capacities, and penalties
for unmet demand are provided as inputs, as are expected
demands µj in each customer zone j. The actual demand
in zone j ∈ J is modeled as Unif(µj − βµj , µj + βµj) for
β = 0.1, 0.2, 0.4. We use αu = αs = αt = .025 for all
problems, and desire a solution within 5% of the optimum.
Upper bounds z′′ are computed in Bound using nu = 100
samples applied to a heuristic solution x̂ computed by solv-
ing (11) with n′ = 20. We desire a relative optimality gap
of 5%, so we set ε = 0.05z′ ≡ 0.05 minx∈X h′(x);

As anticipated, the results obtained using CRNs are
highly correlated. The average pairwise correlations (not
shown) range from a low of 0.8706 (for problem 13) to a
high of 0.9995 (for problem 1).

The easiest problems are clearly those with smaller
variability in the average demand. Indeed, Bound and
Enumerate yield only a few candidate solutions when β =
0.1. But, even in instances with many candidate solutions,
Test1 eliminates all but a handful of these. Eight of the 15
problems are solved completely after Test1, and only one
of the remaining problems has more than two candidate
solutions. The estimated maximum relative gap for X ,
denoted ∆max, is displayed in the table, and is defined as
∆max = maxxk,xk′∈X∗,k 6=k′(z̄k − z̄k′)/z′. This may be
viewed as a conservative point estimate of the true relative
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gap associated with the apparent best solution, and may
therefore compared directly to the desired maximum gap
of 0.05 (i.e., 5%).

Column 11 of Table 1 provides the upper bound, com-
puted from (19), on the additional sampling required if the
initial data are reused; only problem 15 requires further
simulation and testing. (The value of n+ will tend to in-
crease as |X ∗| increases, irrespective of S, and we note
that the largest |X ∗| occurs for problem 15. However, n+

is positive here primarily because S is large.) Column 12
shows the total time required for the Bound, Enumerate,
and initial Simulate (BES) steps, and Column 13 shows
the total times required to run the bootstrap screening test
Test1.

4.1 Improved Lower Bounds

A tighter lower-bounding function h′(x) for BEST may lead
to a reduced initial candidate set X and therefore reduced
computational workload. The ideas of sequential approx-
imation (SA) can help here. Applied to SFLP, SA would
partition the state space of the random demand vector into
Q regions Dq, q = 1, ..., Q, compute conditional expecta-
tions for each element, d̄q = E[d̃|d̃ ∈ Dq], and solve the
lower-bounding problem

min
x∈X

h′Q(x) = min
x∈X

Q∑
q=1

P{d̃ ∈ Dq}h(x, d̄q). (20)

The value of h′Q(x) will approach h(x) from below if
the partition is refined and enlarged appropriately, i.e., as
Q increases. These optimization problems resemble Q-
scenario stochastic programs, which, of course, become
more difficult to solve as Q increases.

BEST does not need an asymptotically convergent lower
bound, but a tighter one may be useful. We find that
substantially tighter bounds can accrue at modest compu-
tational cost by computing and exploiting a simple parti-
tion based on quartiles of total demand. In particular, for
0 = D0 < D1 < D2 < D3 < D4 =∞, we define

Dq = {d̃|Dq−1 <
∑
j∈J

d̃j ≤ Dq}, q = 1, . . . , 4, (21)

and then compute D1, D2 and D3 so that P{d̃ ∈ Dq} =
0.25 for q = 1, . . . , 4. Defining d̄q, q = 1, . . . , 4, as
indicated above, and solving (20) gives the new lower-
bounding function.

We will not present detailed results, but summarize the
effect of using the improved bound on the most difficult
problems, problems 6, 9, 12 and 15: Computational work-
load for the improved bound increases by at most a factor
of two, but |X | is reduced by at least an order of magnitude,
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Table 1: Computational Results for Stochastic Facility Location Problems

Max Computing
Sites Zones Facil. Bounds Times† (secs)

Problem |I| |J | b β z′ z′′ |X | |X ∗| ∆max n+ BES Test1
1 10 20 5 .1 784.7 801.9 2 1 0 0 15.6 1.3
2 .2 840.0 5 1 0 0 17.4 4.5
3 .4 939.7 28 1 0 0 29.7 30.5
4 16 40 8 .1 873.4 878.2 2 1 0 0 192.5 1.3
5 .2 916.7 13 2 0.014 0 111.3 13.2
6 .4 1029.0 173 2 0.028 0 423.6 200.0
7 16 40 9 .1 834.3 856.0 8 2 0.007 0 85.3 7.7
8 .2 885.1 13 1 0 0 78.9 13.3
9 .4 1016.8 150 2 0.015 0 324.2 168.5
10 18 30 10 .1 518.2 523.1 2 1 0 0 22.1 1.3
11 .2 563.4 16 1 0 0 37.3 16.5
12 .4 687.8 566 2 0.020 0 2296.4 761.7
13 20 50 10 .1 958.8 966.2 3 2 0.001 0 132.8 1.1
14 .2 1006.3 72 1 0 0 255.3 74.7
15 .4 1155.1 1201 5 0.021 127 27458.1 1673.3

† BES, i.e., Bound, Enumerate and Simulate, from a 1GHz Pentium III computer operating under Windows 2000,
Test1 from a 1.5GHz Apple PowerPC G4 operating under Mac OSX.
so the computational time for the “BES steps” of BEST
on each of these problems reduces to at most 20% of the
original.

4.2 Reduced Simulation Sampling

The results in Table 1 have been produced using an arbitrarily
chosen n0 = 50 samples. But, bootstrap applications often
involve only 10-20 samples (Efron and Tibshirani 1993).
Accordingly, we now explore BEST’s behavior for n0 = 20
by rerunning Test1 using the first 20 samples produced by
Simulate for each x̂ ∈ X . Problems 4, 8, and 15 each add
one solution to the original set X ∗, problem 14 yields two,
and no changes appear for the others. Test2 then requires
additional sampling for five problems, but the total number
required is less than 45% of the original in all cases. The
results suggest that the total number of simulated samples
could be reduced by over 50% while sacrificing little in
accuracy.

4.3 Simplified Testing

A few alternatives exist do exist for Test1 and/or Test2. For
example, Nelson and Matejcik (1995) describe a screening
procedure that uses CRNs, which could be used in lieu of
Test1; see also Nelson et al. 2001. However, we would
prefer to replace Test2 with a simpler bootstrap procedure,
or combine Test1 and Test2 into a single, simple bootstrap
procedure.
771
5 CONCLUSIONS AND FUTURE WORK

We have presented a new method for solving two-stage
stochastic mixed-integer programs (SMIPs); first-stage vari-
ables must be discrete, but no conditions are placed on
second-stage variables. The BEST algorithm (Bound, Enu-
merate, Simulate and Test) first uses bounding informa-
tion to enumerate a candidate set of (first-stage) solutions
that contains an optimal solution with high confidence. It
then simulates the behavior of each candidate solution by
sampling random second-stage parameters and solving the
resulting, simple, deterministic problems. Next, it uses
statistical tests—we apply bootstrapping—to screen out so-
lutions that are unlikely to be optimal. If the screened
candidate set contains a single element, the algorithm ter-
minates. Otherwise, additional sampling and testing may
be applied to select a single solution that is ε-optimal with
high confidence.

Much work remains to make BEST better. We currently
enumerate candidate solutions by solving a sequence of
increasingly restricted MIPs. A procedure much like branch
and bound would perform this more efficiently. The need for
a deterministic lower-bounding function in the enumeration
step limits BEST’s applicability, so a probabilistic alternative
could prove useful. The bootstrapping screening test proves
highly effective and is simple to implement. But, if that
screening does not yield a single candidate solution, our
follow-on test is more complicated: Future research will
investigate simpler alternatives.
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